Analysis of mixed methods using conforming and nonconforming finite element methods
نویسندگان
چکیده
منابع مشابه
A Unified Analysis for Conforming and Nonconforming Stabilized Finite Element Methods Using Interior Penalty
We discuss stabilized Galerkin approximations in a new framework, widening the scope from the usual dichotomy of the discontinuous Galerkin method on the one hand and Petrov– Galerkin methods such as the SUPG method on the other. The idea is to use interior penalty terms as a means of stabilizing the finite element method using conforming or nonconforming approximation, thus circumventing the n...
متن کاملMixed Methods Using Standard Conforming Finite Elements
We investigate the mixed finite element method (MFEM) for solving a second order elliptic problem with a lowest order term, as might arise in the simulation of single phase flow in porous media. We find that traditional mixed finite element spaces are not necessary when a positive lowest order (i.e., reaction) term is present. Hence we propose to use standard conforming finite elements Qk × (Qk...
متن کاملNonconforming elements in least-squares mixed finite element methods
In this paper we analyze the finite element discretization for the first-order system least squares mixed model for the second-order elliptic problem by means of using nonconforming and conforming elements to approximate displacement and stress, respectively. Moreover, on arbitrary regular quadrilaterals, we propose new variants of both the rotated Q1 nonconforming element and the lowest-order ...
متن کاملNon-conforming Mixed Finite Element Methods for Diffusion Equation
In this dissertation, we consider new approaches to the construction of meshes, discretization, and preconditioning of the resulting algebraic systems for the diffusion equation with discontinuous coefficients. In the first part, we discuss mixed finite element approximations of the diffusion equation on general polyhedral meshes. We introduce a non-conforming approximation method for the flux ...
متن کاملConforming and Nonconforming Virtual Element Methods for Elliptic Problems
We present, in a unified framework, new conforming and nonconforming Virtual Element Methods (VEM) for general second order elliptic problems in two and three dimensions. The differential operator is split into its symmetric and non-symmetric parts and conditions for stability and accuracy on their discrete counterparts are established. These conditions are shown to lead to optimal H1and L2-err...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: ESAIM: Mathematical Modelling and Numerical Analysis
سال: 1993
ISSN: 0764-583X,1290-3841
DOI: 10.1051/m2an/1993270100091